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This study reports on the algebraic generalisation strategies used by two fifth grade
students along with the factors that appeared to influence these strategies. These
students were examined over 18 instructional sessions using a teaching experiment
methodology. The results highlighted the complex factors that appeared to influence
student strategy use, which included: (a) input value, (b) mathematical structure of
the task, (c) prior strategies, (d) visual image of the situation, and (e) social
interactions with the teacher and other student. Particular combinations of these
factors appeared to increase the predictability of student strategy use. However, the
complex nature of the factors influencing these strategies demonstrates the
challenges that exist in encouraging students to move toward more sophisticated
strategies.

The placement of algebra content within the mathematics curriculum has
received considerable attention from educational policy-makers, professional
organisations, and the research community. Rather than viewing algebra as a
separate topic in secondary school courses, Kaput (1995) recommends that
algebraic concepts be developed throughout the elementary and middle school
grades. Documents from the Australian Education Council (1994), the National
Council of Teachers of Mathematics [NCTM] (2000) in the United States, and the
Department for Education and Skills (2001) of Great Britain concur with Kaput’s
view. These documents recommend the development of algebraic ideas at
elementary and middle school levels through activities such as generalising
numeric patterning situations. 

However, student algebraic understanding has often lacked depth due to the
traditional focus on symbol manipulation without a connection to meaning (e.g.,
Booth, 1984; Demby, 1997; Kieran, 1992; Lee & Wheeler, 1989; Mason, 1996). To
circumvent this difficulty, generalising numeric patterns is viewed as a potential
vehicle for transitioning students from numeric to algebraic thinking because it
offers the potential to establish meaning for algebraic symbols by relating them
to a quantitative referent. Kaput (1999) defines generalisation as:

deliberately extending the range of reasoning or communication beyond the
case or cases considered, explicitly identifying and exposing commonality across
cases, or lifting the reasoning or communication to a level where the focus is no
longer on the cases or situation themselves but rather on the patterns,
procedures, structures, and the relationship across and among them. (p. 136)
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One facet of generalisation, as described by Kaput, involves examining
varying quantities and describing relationships that exist among cases for a
particular situation. Developing an understanding of the variant and invariant
conditions can provide meaning for algebraic symbols.

Recent research on early student algebraic reasoning has demonstrated that
elementary students are capable of applying functional reasoning (e.g.,
Schliemann et al., 2003; Warren, 2005) and can develop generalisations (e.g.,
Carpenter & Franke, 2001; Fujii, 2003; Kaput & Blanton, 2001; Swafford &
Langrall, 2000). These studies point to the potential for introducing algebra in
conjunction with arithmetic in the elementary grades (Lins & Kaput, 2004). 

In addition, a growing research base (Healy & Hoyles, 1999; Stacey, 1989;
Swafford & Langrall, 2000) provides insight into the strategies students use to
develop algebraic generalisations. However, little is known about what
influences students to use particular generalisation strategies. Such knowledge is
important for both teachers and curriculum designers. If certain factors could be
identified that influence the use of particular strategies, tasks could be
constructed to encourage students to use and reflect on various strategies,
promoting the use of more sophisticated strategies throughout the elementary
and middle grades. To address this issue our study pursued the following
research questions: (a) How do various factors influence student use of
generalisation strategies? and (b) How do these factors influence the use of a
particular generalisation strategy? In examining these questions, we used a
teaching experiment methodology to develop a theoretical model that can be
used to analyse the factors that influence student strategy use in a variety of
mathematical domains.

Prior Research on Generalisation

Students regularly make generalisations about the world in which they live
(Mason, 1996). They reason that dogs and cats are household pets, but raccoons
are not. When students are asked to generalise numeric situations in the
mathematics classroom, they construct a variety of generalisations and use many
different strategies. For example, Kenney, Zawajewski, and Silver (1998) found
that students constructed a surprising number of valid generalisations for a
particular eighth grade item on the U.S. National Assessment of Education
Progress. These generalisations demonstrate that students are able to analyse
problem situations in a variety of different ways. Other research studies
(Carpenter, Franke, & Levi, 2003; Healy & Hoyles, 1999; Lannin, 2001; Stacey,
1989; Swafford & Langrall, 2000) have examined the strategies and reasoning
that elementary and middle school students use to generalise numeric situations,
such as the Cube Sticker Problem (see Figure 1). We discuss this research further in
the following section.
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Theoretical Perspectives

Generalisation Strategies

This study drew on previous research (Healy & Hoyles, 1999; Lannin, 2001;
Stacey, 1989; Swafford & Langrall, 2000) regarding the strategies children use to
generalise numeric situations. We recognised that these strategies (see Figure 2)
often emerge through different reasoning. For example, children may select a
recursive strategy (i.e., reasoning from term to term) for two different reasons: (a)
the child could determine a recursive rule based on an understanding of a
relationship that occurs in the situation (e.g., noticing that the number of stickers
in the Cube Sticker Problem increases by four each time because a single cube can
be inserted into the middle of the rod); or (b) the child could discover a numeric
pattern in the consecutive values of the dependent variable, absent a strong
connection to the context (e.g., noticing that the number of stickers increases by
four each time: 6, 10, 14, 18, ...).

The framework in Figure 2 guided our analysis of children’s reasoning and
influenced our instructional goals. Similar to Healy and Hoyles (1999), our desire
was for the children to be flexible in their reasoning so they could recognise the
power and limitations of the various strategies. For example, we designed tasks that
encouraged students to examine the use of whole-object reasoning (e.g., mistakenly
thinking that if a rod of length five has 22 stickers, a rod of length 10 has 44 stickers)
so the children would deepen their understanding of proportional reasoning and
recognise why this method often over or undercounts the desired attribute.

Occasionally, after the participants developed a generalisation, strategies of
fictitious students were introduced to encourage the participants to reflect on the
strengths and limitations of alternative strategies in comparison to those that
were originally developed.
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A company makes coloured rods by joining
cubes in a row and using a sticker machine to
place “smiley” stickers on the rods. The machine
places exactly one sticker on each exposed face of
each cube. Every exposed face of each cube has to
have a sticker, so this length two rod would need
10 stickers.

1. How many stickers would you need for rods of length 1-10? Explain how you
determined these values.

2. How many stickers would you need for a rod of length 20? Of length 50? Of
length 127? Explain how you determined these values.

3. Explain how you could find the number of stickers needed for a rod of any
length. Write a rule that you could use to determine this.

Figure 1. Cube Sticker Problem.



We view the strategies in Figure 2 along a continuum from recursive to
explicit. The use of the whole-object and chunking strategies are attempts by
students to immediately calculate particular values. However, both strategies
vary more conditions than do explicit strategies, leading to difficulties in general
implementation. For example, in the Cube Sticker Problem (Figure 1) the whole-
object strategy can be used to find the number of stickers for a length-20 rod
when the number of stickers for a length-10 rod is known (by subtracting two
stickers from the result of doubling the number of stickers from a length-10 rod).
The use of the whole-object strategy to find the number of stickers for a rod of
length 235 has the effect of creating challenges, as the student must consider the
impact of combining multiple groups of 10 and an extra group of 5, for example.
In a similar way, the chunking strategy resembles an explicit strategy. However,
the starting value changes as the student attempts to calculate particular values.
For example, the student may begin with knowledge of the 10th output value
and determine the 25th output value. The 25th value is then used as the starting
point to determine the next output value. 
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Strategy Description

Explicit A rule is constructed that allows for immediate calculation 
of any output value given a particular input value [e.g., there 
are four sticker for each cube, so I took four times the length
of the rod, then I added two stickers for the ends of  the rod.] 

Whole-Object The student uses a portion as a unit to construct a larger 
(also referred to unit using multiples of the unit. The student may fail to 
as Unitising) adjust for any over or undercounting, when applicable [e.g., 

a rod of length 10 has 42 stickers, so a rod of length 20 
would have 42 ( 2 or 84 stickers (incorrect)]. The student 
may adjust for over (or under) counting due to the overlap 
that occurs when units are connected. [A rod of length 10 
has 42 stickers, so a rod of length 20 would have 42 ( 2 - 2 
because the stickers between the two length 10 sections 
would need to be removed.] 

Chunking The student builds on a recursive pattern by building a unit
onto known values of the desired attribute. [For a rod of 
length 10 there are 42 stickers, so for a rod of length 15, 
I would take 42 + 5(4) because the number of stickers 
increases by 4 each time.]

Recursive The student describes a relationship that occurs in the 
situation between consecutive values of the independent 
variable. [Each additional cube adds 5 stickers, and one 
sticker must be removed when the new cube is added to 
the rod, making a total of 4 stickers added for each cube.]

Figure 2. Generalisation strategy framework.



Evolution of Research on Strategy Influences
The research base regarding the potential factors that impact student strategy use
demonstrates the complex nature of these factors. For example, Piaget (1970)
described the schema that he hypothesised to exist in the minds of the children
he studied. These schema represented the cognitive structures that students evoked
as they engaged in various tasks. Reflection on certain tasks by a child appeared
to lead to reorganisation (accommodation) or an integration of ideas into the
child’s current schema (assimilation). Piaget’s work alludes to the powerful influence
that students’ prior ways of thinking can have on strategy use and selection.

Whereas Piaget focused on the individual mental constructs of children,
Vygotsky (1934/1978) examined learning as situated within the social culture of
the child. He suggested that learning occurs through social negotiation as
children interact with their environment. Through the process of social
negotiation, children develop meaning for complex sign and symbol systems
such as speech, language, and mathematics. The creation of these signs and
symbols leads to new connections in the mind of the child. As stated by Vygotsky: 

Every function in the child’s cultural development appears twice: first on the
social level, and later, on the individual level; first between people
(interpsychological, and then inside the child (intrapsychological). This applies
to voluntary attention, to logical memory, and to the formation of concepts. (p. 57)

Vygotsky and Piaget identified the complex forces within and external to
children that impact the strategies they select. In relation to algebraic
generalisation, specific potential forces have been identified that could lead to
the use of more sophisticated strategies. Healy and Hoyles (1999) identified the
visual connection between the problem context and the corresponding symbolic
representation as a factor that encouraged student sense making of explicit rules
in a technology rich instructional environment. Similarly, Swafford and Langrall
(2000) and Zazkis (2001) suggested that having students examine numerous and
increasingly large input values can promote student use of explicit reasoning.
Stacey and MacGregor (2001) noted that many of the tasks used to develop
explicit reasoning tend to focus students on the recursive relationship that exist
in the situation, rather than promoting the use of more sophisticated strategies.
Instead, Stacey and MacGregor encouraged the use of tasks that diminish the
emphasis on the recursive relationship, focusing students on the connection
between the input and output values so that students begin to examine explicit
relationships. As we began our research on strategy influences, we realised that
a variety of factors could lead to changes in student strategy use. We initially
sought to identify particular forces that drove the changes we observed in our study.

Method, Data Sources, and Analysis

Eight fifth-grade students were purposefully selected from the fifth grade
population of 80 students in a U.S. elementary school using a pre-assessment
consisting of three tasks similar to those used later in the study. The eight
students represented a range of ability levels and strategy use; they were
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grouped into two high/medium and two low/medium pairs. The pairing of
students allowed us to focus on the cognition of a particular student while
maintaining an element of the social classroom environment. The students had
previously experienced instruction in grades K-4 that focused on following
procedures without much focus on developing student understanding. In grade
5, the school district adopted new curricular materials that were intended to
develop a deeper understanding of mathematical concepts. One high/medium
pair, Lloyd and Dallas, serves as the focus for this paper. 

Our research served as a design experiment (Cobb, 2000) in which we
attempted to understand the impact of various factors on student strategy use. A
teaching experiment in the model of Steffe and Thompson (2000) was utilised
throughout 18 instructional sessions occurring over a four-month period. In this
design, a pair of students interacts with a lead teacher (first author) and a witness
(second or third authors). The teacher’s role during these sessions was to
facilitate student thinking without overtly directing participants to any
particular solution or strategy. As such, we followed the guidelines set forth in
the NCTM Standards (2000) that students be allowed to solve problems and
apply their reasoning to tasks. The teacher guided the students by asking them
to explain their thinking and to consider why they thought their rules could be
applied to various values. During each episode, students attempted to generalise
algebraic situations. The tasks were purposefully chosen to facilitate the
generation and testing of hypotheses about “students’ unanticipated ways and
means of operating as well as their unexpected mistakes” (p. 277). (See Figure 3
for a list of the tasks.) This allowed us to create models of student thinking that
could be examined, tested, and modified. 

Each episode was captured on video with a separate camera focused on each
participant. Further evidence included the researchers’ field notes, students’
written work, and video screen-capture of students’ computer spreadsheets.

Following the completion of the 18-week teaching experiment, the data were
retrospectively analysed using a data-reduction approach (Miles & Huberman,
1994). Initially, a descriptive account of the events for each session was
constructed. The research team used these rich descriptive accounts to identify
and code each occurrence of the four strategies identified in our framework. 

In addition to coding for each strategy, special attention was paid to the
context surrounding a change in strategy. Using descriptive accounts, strategy
schematics (see Figure 4 for a schematic for the Cube Sticker Problem) were
constructed to visually represent individual strategy use, change, and influence
during each session. Strategy types were placed vertically on the schematic with
the chronological order of strategy-use depicted horizontally; this organisation
resulted in a matrix where each position represented a different solution strategy.
The identification of influencing factors was difficult; student comments were
used in the identification when possible, but the identification of a single factor
remained a daunting task. 

A constant-comparative method (Glaser & Strauss, 1967) was applied to test
and revise the coding of influencing factors resulting in the categories of
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Strategy Cube Sticker – Session 3 – Dallas

Explicit

Whole-
Object

Chunking

Recursive

Counting

Teacher asks where the
4 and 2 come from

Teacher asks about rod
of length 5

Looks at a rod of
length 5

Claims the rule is
2n + 2n + 2

Quickly relates to 
his 4n+2 rule.

Notices that 
horizontal and 

vertical sides both
increase by 2 
every time.

Justifies using 
context.

Notices
Pattern.

Teacher encourages student 
to place values in a table.

Notes that
2*5=10

Claims rule 
is 5n

Checks and
realises

it is 
incorrect.

Looks at rod of 
length 4

Claims rule is 
2n + 2(n+1)

States he is counting
horizontal and 
vertical sides.

Looks at values in table

Rod Length Stickers

2 10

3 14

4 18

Claims rule is 4n+2

Justifies using 
number pattern.
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Session Task Mathematical Structure

1 Shoe Organisation Introduction to Tasks

2 Magic Money Pot Introduction to Tasks

3 Cube Sticker Linear increasing

4 Cube Sticker Alternative Solutions Linear increasing

5 Theatre Seats Linear increasing

6 Cube Sticker Revisited Linear increasing

7 Poster Linear increasing

8 Beam Linear increasing

9 Pyramid Linear decreasing

10 Walking Linear decreasing

11 Lollipop Linear decreasing

12 Lollipop Revisite Linear decreasing

13 Pizza Sharing Non-linear decreasing

14 Border Linear increasing

15 Floor Design Linear increasing

16 Allowance Non-linear increasing

17 Chocolate Box Non-linear increasing

18 Straw Linear increasing
Brick Linear increasing

Figure 3. Tasks used during the study.

Figure 4. Sample strategy schematic for the Cube Sticker Problem.

Looks at the following values: 

Rod length Stickers

2 10

3 14

Claims that you are adding 4 each time

* Checks answer for length 4 rod.

For a rod of
length 3
counts to
obtain 14.



mathematical structure, input values, social interactions, previous strategies, and
visual image. Episodes from the other student pairings were then coded to check
the scheme. Multiple members of the research team coded each episode and all
discrepancies were discussed and resolved by the team. 

As we coded the factors that influenced student strategy change, we
discussed the challenge posed by attempting to identify a single influencing
factor. We recognised that many factors appeared to simultaneously impact
student strategy selection. Rather than attempt to identify a single influencing
factor, we found that we could better characterise the complexity of the
influences on student strategy use through examining multiple factors.
Therefore, we created cross-case tables for each generalisation strategy to further
detail the impact of the five influencing factors that emerged from the data: the
mathematical structure of the task, the input values, social interactions, previous
student generalisation strategies, and the perceived visual image that the student
had of the situation. Each occurrence of a strategy in our data received a row in
the table describing the nature and extent of each of the five influencing factors.
The cross-case table allowed for a variety of influences to be documented for
each strategy. These tables were analysed with an eye towards salient themes
resulting in a picture of the factors influencing each strategy. A sample of cross-
case table can be found in Figure 5. 

For each student’s strategy change we characterised the mathematical
structure of the task (e.g., whether the problem was linear or non-linear, whether
the task was increasing or decreasing, how the students viewed the task) the
input values used (e.g. moving from a rod of length 10 to a rod of length 20), any
apparent social influence by the teacher or students (e.g., if the teacher asked a
particular question or another student mentioned using a particular strategy),
prior strategies (i.e., the strategies used previously by the student in that
particular session), and visual image (i.e., our assessment of the student’s mental
image of the situation). After coding was completed, we compiled the results by
strategy to compare similarities in the impact of factors across sessions for both
Lloyd and Dallas. As we examined these data, we assumed that all factors
influenced student strategy use simultaneously. However, for each strategy,
particular conditions for a subset of these factors appeared to consistently exist
during student use of particular strategies; we referred to these as determining
factors. For other factors, the conditions varied, leading to our designation of
these factors as contributing factors.

Results

In the following sections we describe the factors that influence the use of the
recursive, whole-object, chunking, and explicit strategies as well as the complex
interactions among these factors. The strategies are presented in the general
order they occurred during the sessions. However, the use of strategies varied by
session and by student. 

The impact of social interactions was always listed as a contributing factor
due to the unpredictable nature of these interactions. In general, if an explanation
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Factors Influencing

Session
Number

6

8

6

8

18

Dallas

Lloyd

Mathematical
Structure

Theatre Seats Revisited (Linear
Increasing) Dallas looks at the
task recursively, observing the
change from row to row.

Jump from the 5th to
the 10th row in the
theatre.

Jump from a beam of
length 20 to a beam
of length 40.

Uses the same strategy
for the 50th row,
building from the fact
that there are 34 seats
in the 10th row. 

To find the number of
rods on a beam of
length 37, he
recognizes the groups
of ten (10 + 10 + 10 +
7)

Recognizes that to
find the 20th row he
can use the 10th row
as 10+10 = 20

Beam Problem (Linear Increasing)
Dallas sees that four objects can
be added to the end of each prior
beam to create a new beam.

Theatre Seats Revisited (Linear
Increasing) Lloyd describes
how the seats in the next row
are added to the previous row
(1.5 seats to each side)

Beam Problem (Linear Increasing)
Lloyd has difficulty seeing a
relationship between the
current and prior beam.
Eventually, he is able to see
where the 4 rods are added to
the previous beam.

Straw Problem (Linear
Increasing) Lloyd sees that 3
additional straws can be
added to the end of the straw
to create the next term.

Input Values 
for Task

Social Influence of
Teacher & Students

Prior
Strategies

Visual Image 
of Situation

He does not appear to have a strong
visual image of doubling in this
situation.

Strong visual image of what is
occurring when doubling.

He does not appear to have a strong
visual image of doubling in this
situation.

He seems to understand that extra
rods need to be added for the
connectors between the length 10
beams, but does not see the need to an
extra rod joining the length 10 piece
and the length 7 piece. 

No apparent use of a visual image.
Lloyd quickly doubles his value for 10
and does not make the appropriate
adjustments.

Recursive Strategy for
N = 5, he says that he
doesn’t want to keep
adding 3 all the way
up to 10. 

Dallas has an explicit
rule when asked
whether the whole-
object strategy makes
sense.

Used for recursive for
row 10, whole-object
for row 23.

Recursive and whole-
object.

Recursive for 6 and 7
squares, Chunking for
10 squares.

None

Lloyd is using the whole-
object strategy and Dallas
is questioned as to
whether this is correct.

Dallas did use the whole-
object strategy earlier 
for N=10.

Dallas draws and shows
that Lloyd is missing a
rod connecting the beams
of length 10.

The teacher draws him
back to the context and to
drawing out the cases to
address his over count.
He doesn’t understand.

Figure 5. A portion of a cross-case strategy table for the whole-object strategy.



for a strategy was given or a question was asked, these interactions had the
potential to impact student strategy use. However, the influence of the social
interactions appeared to depend upon the nature of the comment and did not
favour one strategy over another. For these reasons, the social influence will not
be expanded upon for any of the following generalisation strategies.

Recursive

Input values, mathematical structure, and prior strategies were identified as
determining factors for the use of a recursive strategy. Dallas and Lloyd were
more likely to utilise a recursive strategy for a given task when the input values
were relatively close, the task provided a clear connection to incremental change,
and only recursion had been used previously. Student visualisation also
impacted strategy use. At times, Dallas and Lloyd used recursion when they
appeared to have a strong visual image of the situation and at other times when
they focused on decontextualised numeric relationships. 

An example that illustrates many of the influencing factors of recursion is
Lloyd’s attempt to generalise the Beam Problem (see Figure 6) in Session 8. Lloyd
began drawing and counting the number of rods required for beams of length 2,
4, 5, and 8, (see Figure 7 for the strategy schematic). When asked to determine the
number of rods for a length-10 beam, he began using a recursive strategy,
recognising that four rods could be added to the right side of a length-8 beam to
generate a length-9 beam, and subsequently, a length-10 beam. Lloyd then used
the whole-object and explicit strategies until he was asked by the teacher to find
the number of rods for a length-103 beam given that a length-102 beam required
407 rods; at this point he returned to using a recursive strategy.

When the input values were relatively close, Lloyd recognised the recursive
relationship and used the idea that the number of rods increased by four each
time to calculate the number of rods for a length-10 beam from a beam of length
8. As the input values became larger and farther apart (i.e., jumped from 10 to
20), he abandoned the recursive strategy, attempting to find a more efficient way
to determine the number of rods. 

The ease in recognising the recursive relationship appeared to lead Lloyd
and Dallas to use recursion as an initial strategy. For larger input values, the
students rarely used recursion, as they appeared to eliminate this strategy in
favour of more efficient methods. However, recursion often reappeared when
students were questioned about consecutive input values, as evidenced by Lloyd
in Session 8 for beams of length 102 and 103. 

The ease in recognising the recursive relationship in the problem appeared
to encourage Lloyd and Dallas to use recursion as an initial strategy. The
structure of the task allowed Lloyd to visualize how rods could be joined to
create a beam with the next integral length. For the Beam Problem, counting the
number of “new” rods as the beam increased from length n to length n + 1 was
similar to how they counted the total number of rods. For situations where the
next instance was added onto one end of the previous length, Lloyd and Dallas
were able to quickly recognise the recursive relationship.
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Strategy Beam Problem – Session 8 – Lloyd

Explicit

Whole-
Object

Chunking

Recursive

Counting
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Beams are designed as a support for various bridges. The beams are constructed using
rods. The number of rods used to construct the bottom of the beam determines the
length of the beam. Below is a beam of length 4.

How many rods are needed to make a beam of length 5? Of length 8? Of length 10? 
Of length 20? Of length 34? Of length 76?

How many rods are needed for a beam of length 223?

Write a rule or a formula for how you could find the number of rods needed to make 
a beam of any length. Explain your rule or formula.

Figure 6. Beam Design Problem.

Figure 7. Lloyd’s strategy schematic for the Beam Problem.

For a length-10
beam he adds 

two groups of 4
rods to the 31 he
obtains for N = 8 

to get a total 
of 39.

For a length 
-4, 2, 5, 8
beam he
counts to

obtain
15, 7, 19, 31. 

Input values 
increase from 

10 to 20.

Teacher asks student
if there is an easier

way.

For a length 23 beam 
states that you would 

take 39 x 2 
(for two length-10 beams) 

plus 11 (for a length-3 beam) 
plus 1 (to connect them).

For a length-37 beam 
takes 39 x 3+2 for the 

3 groups of 10 and the 
2 connecting rods. Then
adds the number of rods 

for a length 7 beam.

For a length-20
beam he doubles
the amount from

the length-10
beam (39) to

obtain 78.

When asked how he 
would calculate the 

102nd term from the 103rd
(and the 56th term 

from the 57th) 
uses a recursive rule 

and adds 4 (subtracts 4).



However, for situations such as the Floor Design Problem (see Figure 8), Lloyd
and Dallas were unable to visualise the increase in the number of tiles when the
length of the design increased from n to n + 1. For this task, tiles must be inserted
into all sides of the design as the length of the design increases by one, a relation-
ship that does not directly relate to how the students typically counted the tiles.

As Lloyd did in Session 8, the students occasionally established a visual
referent for their recursive rules. At other times, the students appeared to notice
a pattern in the output values after computing these values for consecutive input
values. For example, Dallas noticed that the output values increased from 10 to
14 for rods of length 2 and 3 in the Cube Sticker Problem (see Figure 9). After
testing this conjecture for a length-4 rod, he assumed that the increase in the
number of stickers was four for any two consecutive values.

Whole-Object

The input values, mathematical structure of the task, visual image, and prior
strategies were determining factors for the use of the whole-object strategy.
When certain dimensions of these factors coincided, the whole-object strategy
was likely to be utilised. For example, when a particular input value was a
multiple, predominantly a double, of a previously used input value and the
student did not appear to have a strong visual image of the problem situation,
the student was more likely to use the whole-object strategy. Prior strategies also
played a determining role, as students often moved from recursion to the whole-
object strategy in search of a more efficient strategy. Finally, the mathematical
structure of linear decreasing situations, such as the Lollipop Problem, appeared to
eliminate student consideration of the whole-object strategy. The inverse
variation of the input and output values appeared to invalidate the use of the
whole-object strategy as a means for determining the output values. Students
used the whole-object strategy only for increasing linear situations. 
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The AKME floor design company creates square floor
patterns made of shaded square tiles surrounded by a
grey border. The size of the floor is determined by the
side length of the shaded square in the centre of the
pattern. Below is the example of a floor of length 3
(shaded tiles). 

How many grey tiles would you need to make a floor
of length 6 (shaded tiles)? 10 (shaded tiles)? 20
(shaded tiles)? 47 (shaded tiles)? 139 (shaded tiles)?

Write a rule or a formula for how you could find the
number of grey tiles needed to make a floor of any length (in shaded tiles). Explain
your rule or formula.

Figure 8. Floor Design Problem.



The Beam Problem (see Figure 6) illustrates how the aforementioned factors
influenced the use of the whole-object strategy. As seen in Lloyd’s Beam Problem
schematic (see Figure 7), after finding the number of rods for a length-10 beam,
Lloyd was asked to determine the number of rods for a length-20 beam. He doubled
the number of rods for the length-10 beam (39), obtaining 78 rods. To justify his
strategy, Lloyd explained that since 10 + 10 was 20, he added 39 and 39 to determine
the number of rods required for a length-20 beam. Doubling the prior input value
often provoked the use of the whole-object strategy. However, the whole-object
strategy was also used in non-doubling situations. For example, following Lloyd’s
initial use of the whole-object strategy in session 8, he again employed the whole-
object strategy to ascertain the number of rods needed for a length-37 beam. Building
upon the number of rods (39) for a beam of length 10, Lloyd noted that 10*3 + 7 =37.
He then reasoned (incorrectly) that 39*3 added to the number of rods needed for
a length-7 beam would calculate the number of rods for a length-37 beam.

In both of these instances, Lloyd appeared to lack a strong visual image of
the problem situation, leading to incorrect results when he used the whole-object
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Figure 9. Dallas’s strategy schematic for the Beam Problem.
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strategy. A stronger visual image of how doubling or tripling the number of rods
for a length-10 beam related to the problem situation could have led Lloyd to
realise that he undercounted the number of rods. Dallas, though he did not use
the whole-object strategy initially, was able to recognise the errors that Lloyd
made. Dallas appeared to have a strong mental image of how doubling and
tripling the number of rods for a length-10 beam related to the problem context.
He stated that after adding 39 and 39 to obtain the number of rods for a length-
20 beam, Lloyd must also add an additional rod where these two length-10
sections join to correctly count the number of rods (see Figure 10). Dallas’s strong
mental image of the problem situation allowed him to use the whole-object strategy
correctly, whereas Lloyd’s poor mental image led him to an incorrect solution. 

As previously noted, Lloyd’s use of the whole-object strategy coincided with
his prior use of recursion. He appeared to recognise recursion was inefficient for
determining output values as input values increased. During the study, Lloyd
was more likely to employ a whole-object strategy than Dallas. While this was
certainly due to the afore-mentioned factors, Lloyd’s apparent focus on
particular values in lieu of obtaining a general rule also seemed to influence his
use of the whole-object strategy. 

Chunking

Determining factors for the chunking strategy include input values,
mathematical structure, and prior strategies. Students were more likely to use a
chunking strategy when input values were relatively close together, the task
involved a linear decreasing situation, and when they had previously used the
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Figure 10. Lloyd’s incorrect use of  Whole-Object Strategy for Beam Problem.
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recursive strategy. Visualisation, while having an effect on the use of chunking,
was not considered a determining factor.

Lloyd’s use of the chunking strategy during the Lollipop Problem (see Figure
11) provides an illustration of these factors. For this situation, the students were
required to determine the number of lollipops left in the box after four days and
after six days, among others; hence, the situation is linear decreasing and, for
these values, involves input values that are relatively close. To determine the
number of lollipops left in the box after six days, Lloyd used the number of
lollipops left after four days, 772, and subtracted 14 (7 ( 2) to account for the two days
between day four and day six. This strategy provided the correct result of 758 lollipops
after six days. Lloyd continued to use the chunking strategy for days 10, 20, 34 and 35. 

As previously noted, the relatively small difference between input values
served as a determining factor for the chunking strategy. For instance, Lloyd and
Dallas used chunking for differences in the input values ranging from 2 to 15, as
illustrated by Lloyd’s use of the chunking strategy in the example above. These
differences in input values were typically larger than those values that evoked
recursive reasoning and may explain why recursion is often used prior to
chunking, as the differences between input values generally increased in the
problems we provided the students.

The mathematical structure, in particular the use of linear decreasing
situations, was a determining factor for the chunking strategy. Use of the
chunking strategy in these situations was partly explained by the difficulty
students exhibited in using the whole-object strategy in linear decreasing
situations. For example, Lloyd used both whole-object and chunking in linear
increasing situations, but used only chunking with linear decreasing situations.
As the input values increased and Dallas and Lloyd searched for more efficient
strategies, the chunking strategy was a viable option for these students.
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Ms. Principal has decided to have a “Best Reader”
contest for all of the students at Eastview School. The
student who reads the most books in their grade level
each day will receive a lollipop. Ms. Principal has
purchased a box with 800 lollipops. Each day 7 lollipops
are taken from the box and given to a “Best Reader”
(one for each grade, K-6). 

How many lollipops will there be in the box after the
contest has lasted for 4 days? 6 days? 10 days? 20 days?
34 days? 45 days?

Write a rule that will calculate the number of lollipops after any number of days.

How long will it take until Ms. Principal runs out of lollipops? 

Figure 11. The Lollipop Problem.



Explicit

Determining factors for the use of the explicit strategy were the input values,
prior strategies, and students’ visual images of the problem situation. Lloyd and
Dallas were more likely to generate an explicit rule when the input values were
large and relatively distant from the previous input values. The explicit strategy
was rarely the first strategy used; students often used explicit rules when they
sought more efficient methods for calculating output values. The students’ visual
images appeared to contribute to their success in generating correct explicit rules.
When Lloyd and Dallas had poor visual images and focused on particular
values, they were more likely to use incorrect guess-and-check (explicit)
strategies. They were more successful generating correct explicit rules when they
were able to connect their rules to the problem situation.

Session 14 demonstrated the various ways that students constructed explicit
rules. To find the number of squares for a border of length four in the Border
Problem (see Figure 12), Dallas counted the number of squares in the border,
arriving at 12. He noted that the rule “times 2 plus 4” (S = 2n + 4 where S is the
number of squares and n is the border length) calculated the correct number of
squares for this particular instance. When asked whether this rule would always
work, Dallas stated that he was unsure. He looked at the diagram of a length-
seven border and determined that his “times 2 plus 4” rule only applied to a
border of length five and abandoned this rule. Instead, he said that “times 3
minus 1” (S = 3n -1) could possibly serve as the explicit rule for this situation. He
returned to the length-four border to verify his new rule, but quickly realised that
this rule was incorrect as well. 

The teacher then directed Dallas to consider a diagram where the length of
the border was 25, encouraging him to focus on the diagram to develop his rule.
At this point Dallas stated that he saw two groups of 25 squares and two groups
of 23 squares (see Figure 13), appearing to connect the rule [S = 2n + 2(n-2)] to his
mental image of the situation. When asked whether his rule would always work,
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The student council is creating designs with a
dotted pattern on the border. The council would
like to know how many squares are needed with
the dotted pattern. They have asked the 5th grade
class for help.

1. How many squares are in the border of a 4 by
4 grid? A 7 by 7 grid? A 10 by 10 grid? A 16 by
16 grid? A 25 by 25 grid? A 100 by 100 grid?

2. Write a rule to find the number of squares in
the border of any size grid

Figure 12. The Border Problem.



Dallas said that it would because a similar method of counting could be used for
a border of any length. He then applied the rule to a border of length 57.

This session was typical in that large input values often encouraged the use
of an explicit rule. Dallas often desired to develop explicit rules when he
attempted to generalise problems in an effort to find an efficient strategy that
would allow for the quick calculation of output values. However, Lloyd and
Dallas often employed other strategies prior to developing explicit rules, though
the explicit strategy was typically a final strategy.

When these students had poor visual images of the problem situation, a
guess-and-check variation of the explicit strategy was often used-a strategy that
led to difficulties in determining how generalisable their rules were. The guess-
and-check strategy frequently led to the development of incorrect rules, as
occurred when Dallas initially tried to generalise the Border Problem (see Figure
12). When Lloyd and Dallas had a strong visual image and made connections
between the context and the explicit rule, a correct rule was almost always found.
This visual connection was sometimes a result of teacher questioning about how
students’ rules related to the context or diagram for a situation.

The mathematical structure appeared to have an effect on the use of the
explicit strategy. Students used explicit rules for linear increasing and linear
decreasing situations. In addition, some tasks, such as the Border Problem,
appeared to encourage the use of explicit reasoning, as the recursive relationship
was not as evident as it was in the Beam Problem (see Figure 6) and the Cube
Sticker Problem (see Figure 1). 
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Figure 13. Dallas’s view of a length-25 border.
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Discussion and Implications

Based on the results of our study, we created a conceptual framework to examine
the potential factors influencing student strategy use. In the following sections,
we describe this framework and provide implications for designing curricular tasks
and guiding instructional decision-making when introducing similar algebraic tasks. 

Factors Influencing Strategy Selection

Three broad categories emerged for grouping the factors that influenced student
strategy selection (see Figure 14): social factors, cognitive factors, and task
factors. We recognised that as a student engages in a task, she simultaneously
interacts and is influenced by the other students and the teacher (social factors),
her existing mental structures (cognitive factors), and the problem situation (task
factors). This theoretical lens allowed us to examine the complex combination of
factors that influenced student strategy selection in our study. Below we describe
these three factors in detail. We contribute to theory about student strategy
selection through our view of the simultaneous impact of factors influencing
strategy selection. Previous studies (Healy & Hoyles, 1999; Stacey & MacGregor,
2001; Swafford & Langrall, 2000; Warren, 2004; Zazkis, 2001) have focused on one
or two factors. The examination of social, cognitive, and task factors appears to
allow for more reliable predictions of student strategy selection, though further
research is necessary to examine how these factors influence student reasoning.

Student cognitive structures represent one factor influencing student
strategy use. Piaget (1970) utilised such a perspective to develop conjectures
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Figure 14. Factors influencing student strategy selection.
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about the mental structures that exist in the mind of the individual. Based on a
child’s current mental structures, she either assimilates new knowledge into his
current structure or accommodates his mental structure to better fit his new
understanding. As students apply various strategies when generalising numeric
tasks they often encounter situations that challenge their current cognitive
structures, causing a change in strategy. Related to algebraic reasoning, student
cognitive structures include the student’s prior knowledge of mathematical
operations, the strategies that the student used on previous tasks, the
mathematical disposition of the student (National Research Council, 2001), and
the ability of the student to visualise the physical structure of the situation in
relation to the mathematical model that he or she creates (Healy & Hoyles, 1999). 

Another influencing factor is the design of the task itself, including the
mathematical structure of the task and the input values selected to encourage
generalisation. In our study, the mathematical structure of the task includes
whether the task involves a linear increasing (i.e., as the input values increase the
output values increase) or a linear decreasing (i.e., as the input values increase
the output values decrease) situation. The format of the task, as to whether a
recursive or explicit relationship is more accessible, was also an important factor.
Warren (2000, 2004) and Healy and Hoyles (1999) have noted the importance of
encouraging visual connections when students construct generalisations,
emphasising the use of geometric tasks. Another significant feature of the task
includes the selection of input values for the situation. Choosing consecutive or
non-consecutive input values or values that are multiples of each other (e.g., 5,
10, and 20) also serve as potential factors influencing student strategy selection.

Through our work we recognised that student desire for efficiency plays a
role in student strategy use. In fact, this desire for increased efficiency can
encourage a change in strategy use. For example, in the Theatre Seats problem,
Dallas began the session using the recursive relationship that exists between
consecutive rows to find the number of seats for the fifth row. However, his
desire for efficiency appeared to contribute to his use of the whole-object strategy
when finding the number of seats for the 10th row. Dallas quickly realised that
this strategy was incorrect for this particular value, so he returned to the
recursive strategy. After another unsuccessful attempt using the whole-object
strategy and a subsequent return to recursion, Dallas once again changed
strategies, in part due to his desire for an efficient strategy. 

We view efficiency as an influence embedded within our theoretical model.
Student desire for efficiency, along with their perceived inefficiency of certain
strategies often served as the catalyst for their choice of strategy. For example,
Dallas began to use explicit rules early in the teaching experiment. As the
teaching experiment progressed, he recognised the efficiency of explicit rules and
often sought to find such rules for each situation that was provided. 

The Effects ofTask Structure on Strategy Selection

A student’s visual image of an algebraic situation appeared to influence strategy
choice in our study. Tasks for which the previous instance could clearly be
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observed within the following instance allowed students to more easily observe
the change between terms, and hence use a recursive strategy. Figure 15
illustrates this point. Students may exhibit difficulty recognising the recursive
pattern in the second example as the change occurs on four sides of the figure
instead of just one. However, just because the recursive relationship can be easily
seen in the situation does not guarantee that a student will observe this relationship. 

The Floor Design Problem (see Figure 8) provides a situation for which the
previous case is not easily observed in the next case. In this example the increase
between terms is four; however, where the four squares are added to the figure
is not easily observable. The use of a recursive strategy is possible, but the
observation of the recursive pattern is more likely to come from the values
themselves or a table, rather than the visual representation.

A visual representation may also help students develop explicit rules for a
particular situation. The visual representations that lead to explicit rules are often
connected to the counting strategy that a student employs. For instance, a
student may look at the Floor Design Problem and observe that the bottom and top
pieces each has n tiles and that n - 2 tiles exist on the sides between the top and
bottom bar to develop a 2n + 2(n - 2) rule (see Figure 16). 

In order for a student to use a visual cue when developing a strategy, the
student must recognise the visual relationship in a general manner. Our
contention is that some problems facilitate student recognition of certain
relationships that lead to the use of particular generalisation strategies. Hence,
we found that some tasks may promote the use of recursive reasoning whereas
other tasks may encourage the use of explicit reasoning.
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Figure 15. Recursively oriented patterns (grey shaded components denote
changes between steps).
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Implications

We begin the discussion of this section by describing a general pattern of strategy
use based on particular influencing factors that we identified. Next, we describe
the curricular and instructional implications relevant to this pattern of strategy use.

Figure 17 details our predicted strategies based on three influencing factors:
(a) visualisation (poor or strong), (b) mathematical structure(linear increasing or
linear decreasing), and (c) input values (near, multiples of previous known
values, and distant values). The figure was constructed with the assumption that
students are approaching a task that they have not already seen and/or for
which they have not developed a sophisticated generalisation strategy. 

Students tend to use recursive rules when input values are near, regardless
of the type of task or visual image of the situation. However, a student’s visual
image of situation often leads to markedly different views of their recursive
rules. Students with a strong visual image of the situation attempt to connect
their recursive rules to the problem situation (e.g., as Lloyd did for the Beam
Problem), whereas those students focused on numeric values may have little
sense of how their recursive rules relate to the problem context. 

When provided with input values that are multiples of prior known values,
students often apply whole-object strategies for linear increasing situations and
chunking strategies for linear decreasing situations. Again, the use of the whole-
object strategy differs for students who have a poor rather than a strong visual
image of the situation. Students with a poor visual image often apply the whole-
object strategy incorrectly whereas those with a strong visual image recognise the
need to adjust the whole-strategy due to over or undercounting the desired attribute,
just as Dallas pointed out the missing rod for the Beam problem (see Figure 10). 

The use of “distant” input values can encourage the use of explicit strategies.
Students with a poor visual image of the situation often resort to “guess-and-
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Figure 16. A visual representation of the 2n + 2(n - 2) rule.
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check” strategies to develop generalisations, focusing on numeric relationships
rather than relationships that connect to the context of the situation. Such
differences in strategy use occurred when Dallas dealt with the Border Problem
discussed earlier.

Figure 17 represents a tentative initial model for the various strategies that
students may use when provided with generalisation tasks. Based on the input
values, mathematical structure of the task, and the visual image of the situation,
the figure provides a predictor of the strategies that students may apply.
However, we also realise that other factors, such as the geometric nature of the
task, may also impact the strategies used by students. For example, the structure
of the Border Problem (see Figure 12) appears to encourage explicit strategies
over the use of other strategies due to the connection between student counting
strategies and the explicit rules that they construct.

Curricular implications. When constructing numeric generalisation tasks for
elementary and middle school students, curriculum designers need to consider
the variety of factors that influence student strategy selection. Student progress
toward more sophisticated strategies can be provoked through using a variety of
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Figure 17. Predicted strategies based on influencing factors.
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Structure: I for Linear Increasing, D for Linear Decreasing

Input Values: N for Near Values, M for values that are multiples of previous 
values, D for distant values. 



linear problem situations, encouraging students to connect their generalisations
to geometric representations of problem contexts, and through providing
questions that encourage examination of the advantages and limitations of
various strategies.

Instructional tasks should be arranged in a manner that promotes a wide
range of strategies. Tasks should include both linear increasing and decreasing
situations as well as situations that encourage both recursive and explicit
reasoning. Mixing situations that encourage students to use a multitude of
strategies and to construct a variety of rules allow students to reflect on the
advantages and limitations of these ways of reasoning. The tasks that are used in
the classroom should provoke students to use correct and incorrect
generalisation strategies, encouraging them to examine when the various
strategies should be applied. Teachers must promote reflection on student errors
so they better understand why these errors occur (Hiebert et al., 1997). Errors
such as the misapplication of the whole-object strategy can be rather resilient,
just as Lloyd consistently returned to the whole-object strategy over many
sessions.

Situations should be provided that develop connections between the visual
image and the calculations in the generalisation. Tasks that involve geometric
relationships, such as those used in this study, allow students to connect the
meaning of operations to the context of the situation. Similarly, Healy and Hoyles
(1999) found that the use of particular computer software encouraged students
to connect their symbolic representations to iconic representations. Geometric
situations allow students to conjecture whether rules will provide valid results
and to test their conjectures by examining a model of the situation. As students
develop a stronger visual image of the situation, they can better understand their
errors and relate their calculations to the context, potentially leading to a
decrease in the use of unsuccessful numeric generalisation strategies that are
disconnected from the context of the situation.

Instructional Implications. Classroom teachers must also understand the
intent of generalising numeric tasks at the elementary and middle school levels.
Students at these grade levels should experience and construct generalisations
(NCTM, 2000) that encourage them to use sophisticated strategies and to make
connections among these strategies. As such, it is important to bring out the
general nature of their rules (Mason, 1996) by asking students to examine
whether their generalisations apply to all values in the domain and then to justify
why their rules can be applied to all cases.

Classroom interactions should also encourage the sharing of strategies and
discussing the advantages and limitations. Connections to geometric
representations should be encouraged as a means of explaining, justifying, and
refuting student generalisations. Similar to Bednarz, Kieran, and Lee (1996) we
believe that “the process of generalisation as an approach to algebra appears
ultimately related to that of justification” (p. 8). Therefore, we should
consistently ask students to justify their general rules, requiring them to explain
why their rule applies to all values in the domain. 
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Future Research

This study resulted in the construction of a theoretical lens to examine the
various influences on student strategy use. We focused on two students to
develop this theoretical model, but encourage further study of a larger group of
students using this perspective. Further examination of the complex interactions
among these influencing factors could yield a deeper understanding of the
potential factors that encourage students to consider and use efficient and
appropriate generalisation strategies. In addition, further teaching experiments
conducted over a number of years would provide further insight into student use
of these strategies. Further study of strategy use from diverse student groups and
with a variety of age levels would also prove useful for researchers and teachers. 

A primary implication of this study is the recognition that altering a single
influencing factor, such as the mathematical structure of a task, does not
necessarily lead to changes in student strategy use; the task, student cognitive
structures, and social influences all contribute to student strategy selection.
However, varying aspects of the task can provoke change in student strategy use.
Prior student strategies and/or limitations of student perception of the problem
situation can lead students to continue using inefficient or error-laden strategies.

Another important issue involves using student errors as opportunities to
deepen student understanding of generalisation. Stacey (1989) raised questions
about students’ understanding of the generalisation process, asking, “Did
students know that these cases did not follow the rules they were proposing to
use, but ignored the fact? Did they think it to be of no importance or were they
unaware that the rule could be applied to that data?” (p. 161). We also question
how students attempt to reconcile the errors they make while generalising. For
example, Lloyd often used the numeric whole-object strategy even after
previously recognising that it did not apply to previous situations. Further study
of this topic would inform teachers’ and curriculum designers’ decisions regarding
how to encourage students to reflect more effectively on their understanding.
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